Reduced formation of depurinating estrogen-DNA adducts by sulforaphane or KEAP1 disruption in human mammary epithelial MCF-10A cells.
نویسندگان
چکیده
Sulforaphane (SFN) is a potent inducer of detoxication enzymes such as NAD(P)H:quinone oxidoreductase 1 (NQO1) and glutathione-S-transferase (GST) via the Kelch-like erythroid-derived protein with CNC homology-associated protein 1 (Keap1)-NF-E2-related factor 2 (Nrf2) signaling pathway. NQO1 reduces the carcinogenic estrogen metabolite, catechol estrogen-3,4-quinone, whereas GSTs detoxify it through conjugation with glutathione. These 3,4-quinones can react with DNA to form depurinating DNA adducts. Thus, SFN may alter estrogen metabolism and thus protect against estrogen-mediated DNA damage and carcinogenesis. Human breast epithelial MCF-10A cells were treated with either vehicle or SFN and either estradiol (E2) or its metabolite 4-hydroxyestradiol (4-OHE2). 4-Hydroxy-derived estrogen metabolites and depurinating DNA adducts formed from E2 and its interconvertable metabolite estrone (E1) were analyzed by mass spectrometry. Levels of the depurinated adducts, 4-OHE1/2-1-N3Adenine and 4-OHE1/2-1-N7Guanine, were reduced by 60% in SFN-treated cells, whereas levels of 4-OCH3E1/2 and 4-OHE1/2-glutathione conjugates increased. To constitutively enhance the expression of Nrf2-regulated genes, cells were treated with either scrambled or siKEAP1 RNA. Following E2 or 4-OHE2 treatments, levels of the adenine and guanine adducts dropped 60-70% in siKEAP1-treated cells, whereas 4-OHE1/2-glutathione conjugates increased. However, 4-OCH3E1/2 decreased 50% after siKEAP1 treatment. Thus, treatment with SFN or siKEAP1 has similar effects on reduction of depurinating estrogen-DNA adduct levels following estrogen challenge. However, these pharmacologic and genetic approaches have different effects on estrogen metabolism to O-methyl and glutathione conjugates. Activation of the Nrf2 pathway, especially elevated NQO1, may account for some but not all of the protective effects of SFN against estrogen-mediated DNA damage.
منابع مشابه
N-acetylcysteine blocks formation of cancer-initiating estrogen-DNA adducts in cells.
Catechol estrogens, especially 4-hydroxylated metabolites of 17beta-estradiol (E(2)), are responsible for estrogen-induced carcinogenesis. 4-Hydroxyestradiol (4-OHE(2)), a major metabolite of E(2) formed preferentially by cytochrome P-450 1B1, is oxidized to E(2)-3,4-quinone, which can react with DNA to yield the depurinating adducts 4-OHE(2)-1-N3Ade and 4-OHE(2)-1-N7Gua. The apurinic sites gen...
متن کاملInhibition of depurinating estrogen-DNA adduct formation by natural compounds.
Specific metabolites of estrogens, catechol estrogen-3,4-quinones, if produced in relatively large amounts, can become chemical carcinogens by reacting with DNA to form predominantly depurinating DNA adducts. Estradiol (E2)-3,4-quinone (Q) reacts with DNA to form predominantly the depurinating DNA adducts, 4-hydroxyestradiol (OHE2)-1-N3Ade and 4-OHE 2-1-N7Gua. The depurinating adducts induce mu...
متن کاملDepurinating estrogen-DNA adducts, generators of cancer initiation: their minimization leads to cancer prevention
Estrogens can initiate cancer by reacting with DNA. Specific metabolites of endogenous estrogens, the catechol estrogen-3,4-quinones, react with DNA to form depurinating estrogen-DNA adducts. Loss of these adducts leaves apurinic sites in the DNA, generating mutations that can lead to the initiation of cancer. A variety of endogenous and exogenous factors can disrupt estrogen homeostasis, which...
متن کاملResveratrol and N-acetylcysteine block the cancer-initiating step in MCF-10F cells.
Substantial evidence suggests that catechol estrogen-3,4-quinones react with DNA to form predominantly the depurinating adducts 4-hydroxyestrone (estradiol)-1-N3Ade [4-OHE(1)(E(2))-1-N3Ade] and 4-OHE(1)(E(2))-1-N7Gua. Apurinic sites resulting from these adducts generate critical mutations that can initiate cancer. The paradigm of cancer initiation is based on an imbalance in estrogen metabolism...
متن کاملRaloxifene and Desmethylarzoxifene Block Estrogen-Induced Malignant Transformation of Human Breast Epithelial Cells
There is association between exposure to estrogens and the development and progression of hormone-dependent gynecological cancers. Chemical carcinogenesis by catechol estrogens derived from oxidative metabolism is thought to contribute to breast cancer, yet exact mechanisms remain elusive. Malignant transformation was studied in MCF-10A human mammary epithelial cells, since estrogens are not pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Carcinogenesis
دوره 34 11 شماره
صفحات -
تاریخ انتشار 2013